Metamath Proof Explorer


Theorem resinsnlem

Description: Lemma for resinsnALT . (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypotheses resinsnlem.1 ( 𝜑 → ( 𝜒 ↔ ¬ 𝜓 ) )
resinsnlem.2 ( ¬ 𝜑𝜒 )
Assertion resinsnlem ( ( 𝜑𝜓 ) ↔ ¬ 𝜒 )

Proof

Step Hyp Ref Expression
1 resinsnlem.1 ( 𝜑 → ( 𝜒 ↔ ¬ 𝜓 ) )
2 resinsnlem.2 ( ¬ 𝜑𝜒 )
3 1 con2bid ( 𝜑 → ( 𝜓 ↔ ¬ 𝜒 ) )
4 3 biimpa ( ( 𝜑𝜓 ) → ¬ 𝜒 )
5 2 con1i ( ¬ 𝜒𝜑 )
6 5 3 syl ( ¬ 𝜒 → ( 𝜓 ↔ ¬ 𝜒 ) )
7 6 ibir ( ¬ 𝜒𝜓 )
8 5 7 jca ( ¬ 𝜒 → ( 𝜑𝜓 ) )
9 4 8 impbii ( ( 𝜑𝜓 ) ↔ ¬ 𝜒 )