Metamath Proof Explorer
Description: Lemma for resinsnALT . (Contributed by Zhi Wang, 6-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
resinsnlem.1 |
⊢ ( 𝜑 → ( 𝜒 ↔ ¬ 𝜓 ) ) |
|
|
resinsnlem.2 |
⊢ ( ¬ 𝜑 → 𝜒 ) |
|
Assertion |
resinsnlem |
⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ 𝜒 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resinsnlem.1 |
⊢ ( 𝜑 → ( 𝜒 ↔ ¬ 𝜓 ) ) |
| 2 |
|
resinsnlem.2 |
⊢ ( ¬ 𝜑 → 𝜒 ) |
| 3 |
1
|
con2bid |
⊢ ( 𝜑 → ( 𝜓 ↔ ¬ 𝜒 ) ) |
| 4 |
3
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝜒 ) |
| 5 |
2
|
con1i |
⊢ ( ¬ 𝜒 → 𝜑 ) |
| 6 |
5 3
|
syl |
⊢ ( ¬ 𝜒 → ( 𝜓 ↔ ¬ 𝜒 ) ) |
| 7 |
6
|
ibir |
⊢ ( ¬ 𝜒 → 𝜓 ) |
| 8 |
5 7
|
jca |
⊢ ( ¬ 𝜒 → ( 𝜑 ∧ 𝜓 ) ) |
| 9 |
4 8
|
impbii |
⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ 𝜒 ) |