Metamath Proof Explorer


Theorem resinsnlem

Description: Lemma for resinsnALT . (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypotheses resinsnlem.1
|- ( ph -> ( ch <-> -. ps ) )
resinsnlem.2
|- ( -. ph -> ch )
Assertion resinsnlem
|- ( ( ph /\ ps ) <-> -. ch )

Proof

Step Hyp Ref Expression
1 resinsnlem.1
 |-  ( ph -> ( ch <-> -. ps ) )
2 resinsnlem.2
 |-  ( -. ph -> ch )
3 1 con2bid
 |-  ( ph -> ( ps <-> -. ch ) )
4 3 biimpa
 |-  ( ( ph /\ ps ) -> -. ch )
5 2 con1i
 |-  ( -. ch -> ph )
6 5 3 syl
 |-  ( -. ch -> ( ps <-> -. ch ) )
7 6 ibir
 |-  ( -. ch -> ps )
8 5 7 jca
 |-  ( -. ch -> ( ph /\ ps ) )
9 4 8 impbii
 |-  ( ( ph /\ ps ) <-> -. ch )