| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
|- Rel ( F |` ( A i^i { B } ) ) |
| 2 |
|
reldm0 |
|- ( Rel ( F |` ( A i^i { B } ) ) -> ( ( F |` ( A i^i { B } ) ) = (/) <-> dom ( F |` ( A i^i { B } ) ) = (/) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( ( F |` ( A i^i { B } ) ) = (/) <-> dom ( F |` ( A i^i { B } ) ) = (/) ) |
| 4 |
|
dmres |
|- dom ( F |` ( A i^i { B } ) ) = ( ( A i^i { B } ) i^i dom F ) |
| 5 |
|
incom |
|- ( ( A i^i { B } ) i^i dom F ) = ( dom F i^i ( A i^i { B } ) ) |
| 6 |
4 5
|
eqtri |
|- dom ( F |` ( A i^i { B } ) ) = ( dom F i^i ( A i^i { B } ) ) |
| 7 |
6
|
eqeq1i |
|- ( dom ( F |` ( A i^i { B } ) ) = (/) <-> ( dom F i^i ( A i^i { B } ) ) = (/) ) |
| 8 |
|
elin |
|- ( B e. ( dom F i^i A ) <-> ( B e. dom F /\ B e. A ) ) |
| 9 |
|
ancom |
|- ( ( B e. dom F /\ B e. A ) <-> ( B e. A /\ B e. dom F ) ) |
| 10 |
|
snssi |
|- ( B e. A -> { B } C_ A ) |
| 11 |
|
incom |
|- ( A i^i { B } ) = ( { B } i^i A ) |
| 12 |
|
dfss2 |
|- ( { B } C_ A <-> ( { B } i^i A ) = { B } ) |
| 13 |
12
|
biimpi |
|- ( { B } C_ A -> ( { B } i^i A ) = { B } ) |
| 14 |
11 13
|
eqtrid |
|- ( { B } C_ A -> ( A i^i { B } ) = { B } ) |
| 15 |
10 14
|
syl |
|- ( B e. A -> ( A i^i { B } ) = { B } ) |
| 16 |
15
|
ineq2d |
|- ( B e. A -> ( dom F i^i ( A i^i { B } ) ) = ( dom F i^i { B } ) ) |
| 17 |
16
|
eqeq1d |
|- ( B e. A -> ( ( dom F i^i ( A i^i { B } ) ) = (/) <-> ( dom F i^i { B } ) = (/) ) ) |
| 18 |
|
disjsn |
|- ( ( dom F i^i { B } ) = (/) <-> -. B e. dom F ) |
| 19 |
17 18
|
bitrdi |
|- ( B e. A -> ( ( dom F i^i ( A i^i { B } ) ) = (/) <-> -. B e. dom F ) ) |
| 20 |
|
disjsn |
|- ( ( A i^i { B } ) = (/) <-> -. B e. A ) |
| 21 |
20
|
biimpri |
|- ( -. B e. A -> ( A i^i { B } ) = (/) ) |
| 22 |
21
|
ineq2d |
|- ( -. B e. A -> ( dom F i^i ( A i^i { B } ) ) = ( dom F i^i (/) ) ) |
| 23 |
|
in0 |
|- ( dom F i^i (/) ) = (/) |
| 24 |
22 23
|
eqtrdi |
|- ( -. B e. A -> ( dom F i^i ( A i^i { B } ) ) = (/) ) |
| 25 |
19 24
|
resinsnlem |
|- ( ( B e. A /\ B e. dom F ) <-> -. ( dom F i^i ( A i^i { B } ) ) = (/) ) |
| 26 |
8 9 25
|
3bitri |
|- ( B e. ( dom F i^i A ) <-> -. ( dom F i^i ( A i^i { B } ) ) = (/) ) |
| 27 |
26
|
con2bii |
|- ( ( dom F i^i ( A i^i { B } ) ) = (/) <-> -. B e. ( dom F i^i A ) ) |
| 28 |
3 7 27
|
3bitri |
|- ( ( F |` ( A i^i { B } ) ) = (/) <-> -. B e. ( dom F i^i A ) ) |