Metamath Proof Explorer


Theorem resinsnALT

Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion resinsnALT
|- ( ( F |` ( A i^i { B } ) ) = (/) <-> -. B e. ( dom F i^i A ) )

Proof

Step Hyp Ref Expression
1 relres
 |-  Rel ( F |` ( A i^i { B } ) )
2 reldm0
 |-  ( Rel ( F |` ( A i^i { B } ) ) -> ( ( F |` ( A i^i { B } ) ) = (/) <-> dom ( F |` ( A i^i { B } ) ) = (/) ) )
3 1 2 ax-mp
 |-  ( ( F |` ( A i^i { B } ) ) = (/) <-> dom ( F |` ( A i^i { B } ) ) = (/) )
4 dmres
 |-  dom ( F |` ( A i^i { B } ) ) = ( ( A i^i { B } ) i^i dom F )
5 incom
 |-  ( ( A i^i { B } ) i^i dom F ) = ( dom F i^i ( A i^i { B } ) )
6 4 5 eqtri
 |-  dom ( F |` ( A i^i { B } ) ) = ( dom F i^i ( A i^i { B } ) )
7 6 eqeq1i
 |-  ( dom ( F |` ( A i^i { B } ) ) = (/) <-> ( dom F i^i ( A i^i { B } ) ) = (/) )
8 elin
 |-  ( B e. ( dom F i^i A ) <-> ( B e. dom F /\ B e. A ) )
9 ancom
 |-  ( ( B e. dom F /\ B e. A ) <-> ( B e. A /\ B e. dom F ) )
10 snssi
 |-  ( B e. A -> { B } C_ A )
11 incom
 |-  ( A i^i { B } ) = ( { B } i^i A )
12 dfss2
 |-  ( { B } C_ A <-> ( { B } i^i A ) = { B } )
13 12 biimpi
 |-  ( { B } C_ A -> ( { B } i^i A ) = { B } )
14 11 13 eqtrid
 |-  ( { B } C_ A -> ( A i^i { B } ) = { B } )
15 10 14 syl
 |-  ( B e. A -> ( A i^i { B } ) = { B } )
16 15 ineq2d
 |-  ( B e. A -> ( dom F i^i ( A i^i { B } ) ) = ( dom F i^i { B } ) )
17 16 eqeq1d
 |-  ( B e. A -> ( ( dom F i^i ( A i^i { B } ) ) = (/) <-> ( dom F i^i { B } ) = (/) ) )
18 disjsn
 |-  ( ( dom F i^i { B } ) = (/) <-> -. B e. dom F )
19 17 18 bitrdi
 |-  ( B e. A -> ( ( dom F i^i ( A i^i { B } ) ) = (/) <-> -. B e. dom F ) )
20 disjsn
 |-  ( ( A i^i { B } ) = (/) <-> -. B e. A )
21 20 biimpri
 |-  ( -. B e. A -> ( A i^i { B } ) = (/) )
22 21 ineq2d
 |-  ( -. B e. A -> ( dom F i^i ( A i^i { B } ) ) = ( dom F i^i (/) ) )
23 in0
 |-  ( dom F i^i (/) ) = (/)
24 22 23 eqtrdi
 |-  ( -. B e. A -> ( dom F i^i ( A i^i { B } ) ) = (/) )
25 19 24 resinsnlem
 |-  ( ( B e. A /\ B e. dom F ) <-> -. ( dom F i^i ( A i^i { B } ) ) = (/) )
26 8 9 25 3bitri
 |-  ( B e. ( dom F i^i A ) <-> -. ( dom F i^i ( A i^i { B } ) ) = (/) )
27 26 con2bii
 |-  ( ( dom F i^i ( A i^i { B } ) ) = (/) <-> -. B e. ( dom F i^i A ) )
28 3 7 27 3bitri
 |-  ( ( F |` ( A i^i { B } ) ) = (/) <-> -. B e. ( dom F i^i A ) )