Metamath Proof Explorer
Description: Lemma for resinsnALT . (Contributed by Zhi Wang, 6-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
resinsnlem.1 |
|
|
|
resinsnlem.2 |
|
|
Assertion |
resinsnlem |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resinsnlem.1 |
|
| 2 |
|
resinsnlem.2 |
|
| 3 |
1
|
con2bid |
|
| 4 |
3
|
biimpa |
|
| 5 |
2
|
con1i |
|
| 6 |
5 3
|
syl |
|
| 7 |
6
|
ibir |
|
| 8 |
5 7
|
jca |
|
| 9 |
4 8
|
impbii |
|