Metamath Proof Explorer


Theorem resinsnlem

Description: Lemma for resinsnALT . (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypotheses resinsnlem.1 φ χ ¬ ψ
resinsnlem.2 ¬ φ χ
Assertion resinsnlem φ ψ ¬ χ

Proof

Step Hyp Ref Expression
1 resinsnlem.1 φ χ ¬ ψ
2 resinsnlem.2 ¬ φ χ
3 1 con2bid φ ψ ¬ χ
4 3 biimpa φ ψ ¬ χ
5 2 con1i ¬ χ φ
6 5 3 syl ¬ χ ψ ¬ χ
7 6 ibir ¬ χ ψ
8 5 7 jca ¬ χ φ ψ
9 4 8 impbii φ ψ ¬ χ