Metamath Proof Explorer


Theorem resinsn

Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion resinsn F A B = ¬ B dom F A

Proof

Step Hyp Ref Expression
1 relres Rel F A B
2 reldm0 Rel F A B F A B = dom F A B =
3 1 2 ax-mp F A B = dom F A B =
4 incom A B dom F = dom F A B
5 dmres dom F A B = A B dom F
6 inass dom F A B = dom F A B
7 4 5 6 3eqtr4i dom F A B = dom F A B
8 7 eqeq1i dom F A B = dom F A B =
9 disjsn dom F A B = ¬ B dom F A
10 3 8 9 3bitri F A B = ¬ B dom F A