Metamath Proof Explorer


Theorem ressunif

Description: UnifSet is unaffected by restriction. (Contributed by Thierry Arnoux, 7-Dec-2017)

Ref Expression
Hypotheses ressunif.1 H=G𝑠A
ressunif.2 U=UnifSetG
Assertion ressunif AVU=UnifSetH

Proof

Step Hyp Ref Expression
1 ressunif.1 H=G𝑠A
2 ressunif.2 U=UnifSetG
3 unifid UnifSet=SlotUnifSetndx
4 unifndxnbasendx UnifSetndxBasendx
5 1 2 3 4 resseqnbas AVU=UnifSetH