Metamath Proof Explorer


Theorem restid

Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypothesis restid.1 X=J
Assertion restid JVJ𝑡X=J

Proof

Step Hyp Ref Expression
1 restid.1 X=J
2 uniexg JVJV
3 1 2 eqeltrid JVXV
4 1 eqimss2i JX
5 sspwuni J𝒫XJX
6 4 5 mpbir J𝒫X
7 restid2 XVJ𝒫XJ𝑡X=J
8 3 6 7 sylancl JVJ𝑡X=J