Metamath Proof Explorer


Theorem resubf

Description: Real subtraction is an operation on the real numbers. Based on subf . (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion resubf -:2

Proof

Step Hyp Ref Expression
1 resubval xyx-y=ιz|y+z=x
2 rersubcl xyx-y
3 1 2 eqeltrrd xyιz|y+z=x
4 3 rgen2 xyιz|y+z=x
5 df-resub -=x,yιz|y+z=x
6 5 fmpo xyιz|y+z=x-:2
7 4 6 mpbi -:2