Metamath Proof Explorer


Theorem resubf

Description: Real subtraction is an operation on the real numbers. Based on subf . (Contributed by Steven Nguyen, 7-Jan-2023)

Ref Expression
Assertion resubf - : 2

Proof

Step Hyp Ref Expression
1 resubval x y x - y = ι z | y + z = x
2 rersubcl x y x - y
3 1 2 eqeltrrd x y ι z | y + z = x
4 3 rgen2 x y ι z | y + z = x
5 df-resub - = x , y ι z | y + z = x
6 5 fmpo x y ι z | y + z = x - : 2
7 4 6 mpbi - : 2