Metamath Proof Explorer


Theorem resum2sqrp

Description: The sum of the square of a nonzero real number and the square of another real number is a positive real number. (Contributed by AV, 2-May-2023)

Ref Expression
Hypothesis resum2sqcl.q Q = A 2 + B 2
Assertion resum2sqrp A A 0 B Q +

Proof

Step Hyp Ref Expression
1 resum2sqcl.q Q = A 2 + B 2
2 1 resum2sqcl A B Q
3 2 adantlr A A 0 B Q
4 1 resum2sqgt0 A A 0 B 0 < Q
5 3 4 elrpd A A 0 B Q +