Metamath Proof Explorer


Theorem resundi

Description: Distributive law for restriction over union. Theorem 31 of Suppes p. 65. (Contributed by NM, 30-Sep-2002)

Ref Expression
Assertion resundi ABC=ABAC

Proof

Step Hyp Ref Expression
1 xpundir BC×V=B×VC×V
2 1 ineq2i ABC×V=AB×VC×V
3 indi AB×VC×V=AB×VAC×V
4 2 3 eqtri ABC×V=AB×VAC×V
5 df-res ABC=ABC×V
6 df-res AB=AB×V
7 df-res AC=AC×V
8 6 7 uneq12i ABAC=AB×VAC×V
9 4 5 8 3eqtr4i ABC=ABAC