Metamath Proof Explorer


Theorem resundir

Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004)

Ref Expression
Assertion resundir ABC=ACBC

Proof

Step Hyp Ref Expression
1 indir ABC×V=AC×VBC×V
2 df-res ABC=ABC×V
3 df-res AC=AC×V
4 df-res BC=BC×V
5 3 4 uneq12i ACBC=AC×VBC×V
6 1 2 5 3eqtr4i ABC=ACBC