Metamath Proof Explorer


Theorem resv0g

Description: 0g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses resvbas.1 H=G𝑣A
resv0g.2 0˙=0G
Assertion resv0g AV0˙=0H

Proof

Step Hyp Ref Expression
1 resvbas.1 H=G𝑣A
2 resv0g.2 0˙=0G
3 eqidd AVBaseG=BaseG
4 eqid BaseG=BaseG
5 1 4 resvbas AVBaseG=BaseH
6 eqid +G=+G
7 1 6 resvplusg AV+G=+H
8 7 oveqdr AVxBaseGyBaseGx+Gy=x+Hy
9 3 5 8 grpidpropd AV0G=0H
10 2 9 eqtrid AV0˙=0H