Metamath Proof Explorer


Theorem resvmulr

Description: .r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses resvbas.1 H=G𝑣A
resvmulr.2 ·˙=G
Assertion resvmulr AV·˙=H

Proof

Step Hyp Ref Expression
1 resvbas.1 H=G𝑣A
2 resvmulr.2 ·˙=G
3 mulridx 𝑟=Slotndx
4 scandxnmulrndx Scalarndxndx
5 4 necomi ndxScalarndx
6 1 2 3 5 resvlem AV·˙=H