Metamath Proof Explorer


Theorem reu6dv

Description: A condition which implies existential uniqueness. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses reu6d.1 φ B A
reu6d.2 φ x A ψ x = B
Assertion reu6dv φ ∃! x A ψ

Proof

Step Hyp Ref Expression
1 reu6d.1 φ B A
2 reu6d.2 φ x A ψ x = B
3 2 ralrimiva φ x A ψ x = B
4 reu6i B A x A ψ x = B ∃! x A ψ
5 1 3 4 syl2anc φ ∃! x A ψ