Metamath Proof Explorer


Theorem reu6dv

Description: A condition which implies existential uniqueness. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses reu6d.1
|- ( ph -> B e. A )
reu6d.2
|- ( ( ph /\ x e. A ) -> ( ps <-> x = B ) )
Assertion reu6dv
|- ( ph -> E! x e. A ps )

Proof

Step Hyp Ref Expression
1 reu6d.1
 |-  ( ph -> B e. A )
2 reu6d.2
 |-  ( ( ph /\ x e. A ) -> ( ps <-> x = B ) )
3 2 ralrimiva
 |-  ( ph -> A. x e. A ( ps <-> x = B ) )
4 reu6i
 |-  ( ( B e. A /\ A. x e. A ( ps <-> x = B ) ) -> E! x e. A ps )
5 1 3 4 syl2anc
 |-  ( ph -> E! x e. A ps )