Metamath Proof Explorer


Theorem reu6dv

Description: A condition which implies existential uniqueness. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses reu6d.1 ( 𝜑𝐵𝐴 )
reu6d.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝑥 = 𝐵 ) )
Assertion reu6dv ( 𝜑 → ∃! 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 reu6d.1 ( 𝜑𝐵𝐴 )
2 reu6d.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝑥 = 𝐵 ) )
3 2 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝑥 = 𝐵 ) )
4 reu6i ( ( 𝐵𝐴 ∧ ∀ 𝑥𝐴 ( 𝜓𝑥 = 𝐵 ) ) → ∃! 𝑥𝐴 𝜓 )
5 1 3 4 syl2anc ( 𝜑 → ∃! 𝑥𝐴 𝜓 )