Metamath Proof Explorer


Theorem reu6i

Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion reu6i BAxAφx=B∃!xAφ

Proof

Step Hyp Ref Expression
1 eqeq2 y=Bx=yx=B
2 1 bibi2d y=Bφx=yφx=B
3 2 ralbidv y=BxAφx=yxAφx=B
4 3 rspcev BAxAφx=ByAxAφx=y
5 reu6 ∃!xAφyAxAφx=y
6 4 5 sylibr BAxAφx=B∃!xAφ