Metamath Proof Explorer


Theorem reueq

Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015)

Ref Expression
Assertion reueq BA∃!xAx=B

Proof

Step Hyp Ref Expression
1 risset BAxAx=B
2 moeq *xx=B
3 mormo *xx=B*xAx=B
4 2 3 ax-mp *xAx=B
5 reu5 ∃!xAx=BxAx=B*xAx=B
6 4 5 mpbiran2 ∃!xAx=BxAx=B
7 1 6 bitr4i BA∃!xAx=B