Metamath Proof Explorer


Theorem rexanali

Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005) (Proof shortened by Wolf Lammen, 27-Dec-2019)

Ref Expression
Assertion rexanali x A φ ¬ ψ ¬ x A φ ψ

Proof

Step Hyp Ref Expression
1 dfrex2 x A φ ¬ ψ ¬ x A ¬ φ ¬ ψ
2 iman φ ψ ¬ φ ¬ ψ
3 2 ralbii x A φ ψ x A ¬ φ ¬ ψ
4 1 3 xchbinxr x A φ ¬ ψ ¬ x A φ ψ