Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Andrew Salmon
Set Theory
rexbidar
Next ⟩
dropab1
Metamath Proof Explorer
Ascii
Unicode
Theorem
rexbidar
Description:
More general form of
rexbida
.
(Contributed by
Andrew Salmon
, 25-Jul-2011)
Ref
Expression
Hypotheses
ralbidar.1
⊢
φ
→
∀
x
∈
A
φ
ralbidar.2
⊢
φ
∧
x
∈
A
→
ψ
↔
χ
Assertion
rexbidar
⊢
φ
→
∃
x
∈
A
ψ
↔
∃
x
∈
A
χ
Proof
Step
Hyp
Ref
Expression
1
ralbidar.1
⊢
φ
→
∀
x
∈
A
φ
2
ralbidar.2
⊢
φ
∧
x
∈
A
→
ψ
↔
χ
3
2
ex
⊢
φ
→
x
∈
A
→
ψ
↔
χ
4
3
ralimi
⊢
∀
x
∈
A
φ
→
∀
x
∈
A
x
∈
A
→
ψ
↔
χ
5
1
4
syl
⊢
φ
→
∀
x
∈
A
x
∈
A
→
ψ
↔
χ
6
df-ral
⊢
∀
x
∈
A
x
∈
A
→
ψ
↔
χ
↔
∀
x
x
∈
A
→
x
∈
A
→
ψ
↔
χ
7
5
6
sylib
⊢
φ
→
∀
x
x
∈
A
→
x
∈
A
→
ψ
↔
χ
8
pm2.43
⊢
x
∈
A
→
x
∈
A
→
ψ
↔
χ
→
x
∈
A
→
ψ
↔
χ
9
8
pm5.32d
⊢
x
∈
A
→
x
∈
A
→
ψ
↔
χ
→
x
∈
A
∧
ψ
↔
x
∈
A
∧
χ
10
9
alimi
⊢
∀
x
x
∈
A
→
x
∈
A
→
ψ
↔
χ
→
∀
x
x
∈
A
∧
ψ
↔
x
∈
A
∧
χ
11
exbi
⊢
∀
x
x
∈
A
∧
ψ
↔
x
∈
A
∧
χ
→
∃
x
x
∈
A
∧
ψ
↔
∃
x
x
∈
A
∧
χ
12
7
10
11
3syl
⊢
φ
→
∃
x
x
∈
A
∧
ψ
↔
∃
x
x
∈
A
∧
χ
13
df-rex
⊢
∃
x
∈
A
ψ
↔
∃
x
x
∈
A
∧
ψ
14
df-rex
⊢
∃
x
∈
A
χ
↔
∃
x
x
∈
A
∧
χ
15
12
13
14
3bitr4g
⊢
φ
→
∃
x
∈
A
ψ
↔
∃
x
∈
A
χ