Step |
Hyp |
Ref |
Expression |
1 |
|
ralbidar.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
2 |
|
ralbidar.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
3 |
2
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
4 |
3
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
6 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) ) |
7 |
5 6
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) ) |
8 |
|
pm2.43 |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
9 |
8
|
pm5.32d |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
10 |
9
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
11 |
|
exbi |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
12 |
7 10 11
|
3syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
13 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
14 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜒 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) |
15 |
12 13 14
|
3bitr4g |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |