| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralbidar.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 2 |
|
ralbidar.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 3 |
2
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 4 |
3
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 5 |
1 4
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 6 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) ) |
| 8 |
|
pm2.43 |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 9 |
8
|
pm5.32d |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 10 |
9
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 11 |
|
exbi |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 12 |
7 10 11
|
3syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 13 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 14 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜒 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) |
| 15 |
12 13 14
|
3bitr4g |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |