Metamath Proof Explorer


Theorem dropab1

Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion dropab1 ( ∀ 𝑥 𝑥 = 𝑦 → { ⟨ 𝑥 , 𝑧 ⟩ ∣ 𝜑 } = { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } )

Proof

Step Hyp Ref Expression
1 opeq1 ( 𝑥 = 𝑦 → ⟨ 𝑥 , 𝑧 ⟩ = ⟨ 𝑦 , 𝑧 ⟩ )
2 1 sps ( ∀ 𝑥 𝑥 = 𝑦 → ⟨ 𝑥 , 𝑧 ⟩ = ⟨ 𝑦 , 𝑧 ⟩ )
3 2 eqeq2d ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 = ⟨ 𝑥 , 𝑧 ⟩ ↔ 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ ) )
4 3 anbi1d ( ∀ 𝑥 𝑥 = 𝑦 → ( ( 𝑤 = ⟨ 𝑥 , 𝑧 ⟩ ∧ 𝜑 ) ↔ ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝜑 ) ) )
5 4 drex2 ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑧 ( 𝑤 = ⟨ 𝑥 , 𝑧 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑧 ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝜑 ) ) )
6 5 drex1 ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥𝑧 ( 𝑤 = ⟨ 𝑥 , 𝑧 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑦𝑧 ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝜑 ) ) )
7 6 abbidv ( ∀ 𝑥 𝑥 = 𝑦 → { 𝑤 ∣ ∃ 𝑥𝑧 ( 𝑤 = ⟨ 𝑥 , 𝑧 ⟩ ∧ 𝜑 ) } = { 𝑤 ∣ ∃ 𝑦𝑧 ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝜑 ) } )
8 df-opab { ⟨ 𝑥 , 𝑧 ⟩ ∣ 𝜑 } = { 𝑤 ∣ ∃ 𝑥𝑧 ( 𝑤 = ⟨ 𝑥 , 𝑧 ⟩ ∧ 𝜑 ) }
9 df-opab { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } = { 𝑤 ∣ ∃ 𝑦𝑧 ( 𝑤 = ⟨ 𝑦 , 𝑧 ⟩ ∧ 𝜑 ) }
10 7 8 9 3eqtr4g ( ∀ 𝑥 𝑥 = 𝑦 → { ⟨ 𝑥 , 𝑧 ⟩ ∣ 𝜑 } = { ⟨ 𝑦 , 𝑧 ⟩ ∣ 𝜑 } )