| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opeq1 |
|- ( x = y -> <. x , z >. = <. y , z >. ) |
| 2 |
1
|
sps |
|- ( A. x x = y -> <. x , z >. = <. y , z >. ) |
| 3 |
2
|
eqeq2d |
|- ( A. x x = y -> ( w = <. x , z >. <-> w = <. y , z >. ) ) |
| 4 |
3
|
anbi1d |
|- ( A. x x = y -> ( ( w = <. x , z >. /\ ph ) <-> ( w = <. y , z >. /\ ph ) ) ) |
| 5 |
4
|
drex2 |
|- ( A. x x = y -> ( E. z ( w = <. x , z >. /\ ph ) <-> E. z ( w = <. y , z >. /\ ph ) ) ) |
| 6 |
5
|
drex1 |
|- ( A. x x = y -> ( E. x E. z ( w = <. x , z >. /\ ph ) <-> E. y E. z ( w = <. y , z >. /\ ph ) ) ) |
| 7 |
6
|
abbidv |
|- ( A. x x = y -> { w | E. x E. z ( w = <. x , z >. /\ ph ) } = { w | E. y E. z ( w = <. y , z >. /\ ph ) } ) |
| 8 |
|
df-opab |
|- { <. x , z >. | ph } = { w | E. x E. z ( w = <. x , z >. /\ ph ) } |
| 9 |
|
df-opab |
|- { <. y , z >. | ph } = { w | E. y E. z ( w = <. y , z >. /\ ph ) } |
| 10 |
7 8 9
|
3eqtr4g |
|- ( A. x x = y -> { <. x , z >. | ph } = { <. y , z >. | ph } ) |