Metamath Proof Explorer


Theorem dropab1

Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion dropab1
|- ( A. x x = y -> { <. x , z >. | ph } = { <. y , z >. | ph } )

Proof

Step Hyp Ref Expression
1 opeq1
 |-  ( x = y -> <. x , z >. = <. y , z >. )
2 1 sps
 |-  ( A. x x = y -> <. x , z >. = <. y , z >. )
3 2 eqeq2d
 |-  ( A. x x = y -> ( w = <. x , z >. <-> w = <. y , z >. ) )
4 3 anbi1d
 |-  ( A. x x = y -> ( ( w = <. x , z >. /\ ph ) <-> ( w = <. y , z >. /\ ph ) ) )
5 4 drex2
 |-  ( A. x x = y -> ( E. z ( w = <. x , z >. /\ ph ) <-> E. z ( w = <. y , z >. /\ ph ) ) )
6 5 drex1
 |-  ( A. x x = y -> ( E. x E. z ( w = <. x , z >. /\ ph ) <-> E. y E. z ( w = <. y , z >. /\ ph ) ) )
7 6 abbidv
 |-  ( A. x x = y -> { w | E. x E. z ( w = <. x , z >. /\ ph ) } = { w | E. y E. z ( w = <. y , z >. /\ ph ) } )
8 df-opab
 |-  { <. x , z >. | ph } = { w | E. x E. z ( w = <. x , z >. /\ ph ) }
9 df-opab
 |-  { <. y , z >. | ph } = { w | E. y E. z ( w = <. y , z >. /\ ph ) }
10 7 8 9 3eqtr4g
 |-  ( A. x x = y -> { <. x , z >. | ph } = { <. y , z >. | ph } )