Metamath Proof Explorer


Theorem dropab1

Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion dropab1 x x = y x z | φ = y z | φ

Proof

Step Hyp Ref Expression
1 opeq1 x = y x z = y z
2 1 sps x x = y x z = y z
3 2 eqeq2d x x = y w = x z w = y z
4 3 anbi1d x x = y w = x z φ w = y z φ
5 4 drex2 x x = y z w = x z φ z w = y z φ
6 5 drex1 x x = y x z w = x z φ y z w = y z φ
7 6 abbidv x x = y w | x z w = x z φ = w | y z w = y z φ
8 df-opab x z | φ = w | x z w = x z φ
9 df-opab y z | φ = w | y z w = y z φ
10 7 8 9 3eqtr4g x x = y x z | φ = y z | φ