Metamath Proof Explorer


Theorem rexcomf

Description: Commutation of restricted existential quantifiers. For a version based on fewer axioms see rexcom . (Contributed by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses ralcomf.1 _yA
ralcomf.2 _xB
Assertion rexcomf xAyBφyBxAφ

Proof

Step Hyp Ref Expression
1 ralcomf.1 _yA
2 ralcomf.2 _xB
3 ancom xAyByBxA
4 3 anbi1i xAyBφyBxAφ
5 4 2exbii xyxAyBφxyyBxAφ
6 excom xyyBxAφyxyBxAφ
7 5 6 bitri xyxAyBφyxyBxAφ
8 1 r2exf xAyBφxyxAyBφ
9 2 r2exf yBxAφyxyBxAφ
10 7 8 9 3bitr4i xAyBφyBxAφ