Metamath Proof Explorer


Theorem reximdva0

Description: Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012)

Ref Expression
Hypothesis reximdva0.1 φxAψ
Assertion reximdva0 φAxAψ

Proof

Step Hyp Ref Expression
1 reximdva0.1 φxAψ
2 n0 AxxA
3 1 ex φxAψ
4 3 ancld φxAxAψ
5 4 eximdv φxxAxxAψ
6 5 imp φxxAxxAψ
7 2 6 sylan2b φAxxAψ
8 df-rex xAψxxAψ
9 7 8 sylibr φAxAψ