Metamath Proof Explorer


Theorem rexprg

Description: Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypotheses ralprg.1 x=Aφψ
ralprg.2 x=Bφχ
Assertion rexprg AVBWxABφψχ

Proof

Step Hyp Ref Expression
1 ralprg.1 x=Aφψ
2 ralprg.2 x=Bφχ
3 1 notbid x=A¬φ¬ψ
4 2 notbid x=B¬φ¬χ
5 3 4 ralprg AVBWxAB¬φ¬ψ¬χ
6 ralnex xAB¬φ¬xABφ
7 pm4.56 ¬ψ¬χ¬ψχ
8 6 7 bibi12i xAB¬φ¬ψ¬χ¬xABφ¬ψχ
9 notbi xABφψχ¬xABφ¬ψχ
10 8 9 sylbb2 xAB¬φ¬ψ¬χxABφψχ
11 5 10 syl AVBWxABφψχ