Metamath Proof Explorer


Theorem rexrab2

Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ralab2.1 x=yψχ
Assertion rexrab2 xyA|φψyAφχ

Proof

Step Hyp Ref Expression
1 ralab2.1 x=yψχ
2 df-rab yA|φ=y|yAφ
3 2 rexeqi xyA|φψxy|yAφψ
4 1 rexab2 xy|yAφψyyAφχ
5 anass yAφχyAφχ
6 5 exbii yyAφχyyAφχ
7 df-rex yAφχyyAφχ
8 6 7 bitr4i yyAφχyAφχ
9 3 4 8 3bitri xyA|φψyAφχ