Metamath Proof Explorer


Theorem reurab

Description: Restricted existential uniqueness of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Hypothesis reurab.1 x=yφψ
Assertion reurab ∃!xyA|ψχ∃!xAφχ

Proof

Step Hyp Ref Expression
1 reurab.1 x=yφψ
2 1 bicomd x=yψφ
3 2 equcoms y=xψφ
4 3 elrab xyA|ψxAφ
5 4 anbi1i xyA|ψχxAφχ
6 anass xAφχxAφχ
7 5 6 bitri xyA|ψχxAφχ
8 7 eubii ∃!xxyA|ψχ∃!xxAφχ
9 df-reu ∃!xyA|ψχ∃!xxyA|ψχ
10 df-reu ∃!xAφχ∃!xxAφχ
11 8 9 10 3bitr4i ∃!xyA|ψχ∃!xAφχ