Metamath Proof Explorer


Theorem rexreusng

Description: Restricted existential uniqueness over a singleton is equivalent to a restricted existential quantification over a singleton. (Contributed by AV, 3-Apr-2023)

Ref Expression
Assertion rexreusng AVxAφ∃!xAφ

Proof

Step Hyp Ref Expression
1 eqidd [˙A/y]˙[˙A/x]˙φ[˙A/x]˙φA=A
2 nfsbc1v y[˙A/y]˙[˙A/x]˙φ
3 nfv y[˙A/x]˙φ
4 2 3 nfan y[˙A/y]˙[˙A/x]˙φ[˙A/x]˙φ
5 nfv yA=A
6 4 5 nfim y[˙A/y]˙[˙A/x]˙φ[˙A/x]˙φA=A
7 sbceq1a y=A[˙A/x]˙φ[˙A/y]˙[˙A/x]˙φ
8 dfsbcq2 y=Ayxφ[˙A/x]˙φ
9 7 8 anbi12d y=A[˙A/x]˙φyxφ[˙A/y]˙[˙A/x]˙φ[˙A/x]˙φ
10 eqeq2 y=AA=yA=A
11 9 10 imbi12d y=A[˙A/x]˙φyxφA=y[˙A/y]˙[˙A/x]˙φ[˙A/x]˙φA=A
12 6 11 ralsngf AVyA[˙A/x]˙φyxφA=y[˙A/y]˙[˙A/x]˙φ[˙A/x]˙φA=A
13 1 12 mpbiri AVyA[˙A/x]˙φyxφA=y
14 nfcv _xA
15 nfsbc1v x[˙A/x]˙φ
16 nfs1v xyxφ
17 15 16 nfan x[˙A/x]˙φyxφ
18 nfv xA=y
19 17 18 nfim x[˙A/x]˙φyxφA=y
20 14 19 nfralw xyA[˙A/x]˙φyxφA=y
21 sbceq1a x=Aφ[˙A/x]˙φ
22 21 anbi1d x=Aφyxφ[˙A/x]˙φyxφ
23 eqeq1 x=Ax=yA=y
24 22 23 imbi12d x=Aφyxφx=y[˙A/x]˙φyxφA=y
25 24 ralbidv x=AyAφyxφx=yyA[˙A/x]˙φyxφA=y
26 20 25 ralsngf AVxAyAφyxφx=yyA[˙A/x]˙φyxφA=y
27 13 26 mpbird AVxAyAφyxφx=y
28 27 biantrud AVxAφxAφxAyAφyxφx=y
29 reu2 ∃!xAφxAφxAyAφyxφx=y
30 28 29 bitr4di AVxAφ∃!xAφ