| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqidd |
⊢ ( ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 = 𝐴 ) |
| 2 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 |
| 3 |
|
nfv |
⊢ Ⅎ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 |
| 4 |
2 3
|
nfan |
⊢ Ⅎ 𝑦 ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 = 𝐴 |
| 6 |
4 5
|
nfim |
⊢ Ⅎ 𝑦 ( ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 = 𝐴 ) |
| 7 |
|
sbceq1a |
⊢ ( 𝑦 = 𝐴 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 8 |
|
dfsbcq2 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 9 |
7 8
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 10 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐴 ) ) |
| 11 |
9 10
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ↔ ( ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 = 𝐴 ) ) ) |
| 12 |
6 11
|
ralsngf |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 ∈ { 𝐴 } ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ↔ ( ( [ 𝐴 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → 𝐴 = 𝐴 ) ) ) |
| 13 |
1 12
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑦 ∈ { 𝐴 } ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ) |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝐴 } |
| 15 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝐴 / 𝑥 ] 𝜑 |
| 16 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
| 17 |
15 16
|
nfan |
⊢ Ⅎ 𝑥 ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 18 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 = 𝑦 |
| 19 |
17 18
|
nfim |
⊢ Ⅎ 𝑥 ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) |
| 20 |
14 19
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ { 𝐴 } ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) |
| 21 |
|
sbceq1a |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 22 |
21
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 23 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) |
| 24 |
22 23
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ) ) |
| 25 |
24
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ { 𝐴 } ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝐴 } ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ) ) |
| 26 |
20 25
|
ralsngf |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝐴 } ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝐴 = 𝑦 ) ) ) |
| 27 |
13 26
|
mpbird |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 28 |
27
|
biantrud |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
| 29 |
|
reu2 |
⊢ ( ∃! 𝑥 ∈ { 𝐴 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐴 } ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 30 |
28 29
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃! 𝑥 ∈ { 𝐴 } 𝜑 ) ) |