Metamath Proof Explorer


Theorem rextpg

Description: Convert a restricted existential quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ralprg.1 x=Aφψ
ralprg.2 x=Bφχ
raltpg.3 x=Cφθ
Assertion rextpg AVBWCXxABCφψχθ

Proof

Step Hyp Ref Expression
1 ralprg.1 x=Aφψ
2 ralprg.2 x=Bφχ
3 raltpg.3 x=Cφθ
4 1 2 rexprg AVBWxABφψχ
5 4 orbi1d AVBWxABφxCφψχxCφ
6 3 rexsng CXxCφθ
7 6 orbi2d CXψχxCφψχθ
8 5 7 sylan9bb AVBWCXxABφxCφψχθ
9 8 3impa AVBWCXxABφxCφψχθ
10 df-tp ABC=ABC
11 10 rexeqi xABCφxABCφ
12 rexun xABCφxABφxCφ
13 11 12 bitri xABCφxABφxCφ
14 df-3or ψχθψχθ
15 9 13 14 3bitr4g AVBWCXxABCφψχθ