Metamath Proof Explorer


Theorem rexxfrd2

Description: Transfer existence from a variable x to another variable y contained in expression A . Variant of rexxfrd . (Contributed by Alexander van der Vekens, 25-Apr-2018)

Ref Expression
Hypotheses ralxfrd2.1 φyCAB
ralxfrd2.2 φxByCx=A
ralxfrd2.3 φyCx=Aψχ
Assertion rexxfrd2 φxBψyCχ

Proof

Step Hyp Ref Expression
1 ralxfrd2.1 φyCAB
2 ralxfrd2.2 φxByCx=A
3 ralxfrd2.3 φyCx=Aψχ
4 3 notbid φyCx=A¬ψ¬χ
5 1 2 4 ralxfrd2 φxB¬ψyC¬χ
6 5 notbid φ¬xB¬ψ¬yC¬χ
7 dfrex2 xBψ¬xB¬ψ
8 dfrex2 yCχ¬yC¬χ
9 6 7 8 3bitr4g φxBψyCχ