Metamath Proof Explorer


Theorem rfovf1od

Description: The value of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B , is a bijection. (Contributed by RP, 27-Apr-2021)

Ref Expression
Hypotheses rfovd.rf O=aV,bVr𝒫a×bxayb|xry
rfovd.a φAV
rfovd.b φBW
rfovcnvf1od.f F=AOB
Assertion rfovf1od φF:𝒫A×B1-1 onto𝒫BA

Proof

Step Hyp Ref Expression
1 rfovd.rf O=aV,bVr𝒫a×bxayb|xry
2 rfovd.a φAV
3 rfovd.b φBW
4 rfovcnvf1od.f F=AOB
5 1 2 3 4 rfovcnvf1od φF:𝒫A×B1-1 onto𝒫BAF-1=f𝒫BAxy|xAyfx
6 5 simpld φF:𝒫A×B1-1 onto𝒫BA