Metamath Proof Explorer


Theorem rfovcnvfvd

Description: Value of the converse of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B , evaluated at function G . (Contributed by RP, 27-Apr-2021)

Ref Expression
Hypotheses rfovd.rf O = a V , b V r 𝒫 a × b x a y b | x r y
rfovd.a φ A V
rfovd.b φ B W
rfovcnvf1od.f F = A O B
rfovcnvfv.g φ G 𝒫 B A
Assertion rfovcnvfvd φ F -1 G = x y | x A y G x

Proof

Step Hyp Ref Expression
1 rfovd.rf O = a V , b V r 𝒫 a × b x a y b | x r y
2 rfovd.a φ A V
3 rfovd.b φ B W
4 rfovcnvf1od.f F = A O B
5 rfovcnvfv.g φ G 𝒫 B A
6 1 2 3 4 rfovcnvd φ F -1 = g 𝒫 B A x y | x A y g x
7 fveq1 g = G g x = G x
8 7 eleq2d g = G y g x y G x
9 8 anbi2d g = G x A y g x x A y G x
10 9 opabbidv g = G x y | x A y g x = x y | x A y G x
11 10 adantl φ g = G x y | x A y g x = x y | x A y G x
12 simprl φ x A y G x x A
13 elmapi G 𝒫 B A G : A 𝒫 B
14 13 ffvelrnda G 𝒫 B A x A G x 𝒫 B
15 5 14 sylan φ x A G x 𝒫 B
16 15 elpwid φ x A G x B
17 16 sseld φ x A y G x y B
18 17 impr φ x A y G x y B
19 2 3 12 18 opabex2 φ x y | x A y G x V
20 6 11 5 19 fvmptd φ F -1 G = x y | x A y G x