Step |
Hyp |
Ref |
Expression |
1 |
|
rfovd.rf |
⊢ 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥 ∈ 𝑎 ↦ { 𝑦 ∈ 𝑏 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
2 |
|
rfovd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
rfovd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
4 |
|
rfovcnvf1od.f |
⊢ 𝐹 = ( 𝐴 𝑂 𝐵 ) |
5 |
|
rfovcnvfv.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) |
6 |
1 2 3 4
|
rfovcnvd |
⊢ ( 𝜑 → ◡ 𝐹 = ( 𝑔 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑔 ‘ 𝑥 ) ) } ) ) |
7 |
|
fveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 ∈ ( 𝑔 ‘ 𝑥 ) ↔ 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ) ) |
9 |
8
|
anbi2d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑔 ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ) ) ) |
10 |
9
|
opabbidv |
⊢ ( 𝑔 = 𝐺 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ) } ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ) } ) |
12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝐴 ) |
13 |
|
elmapi |
⊢ ( 𝐺 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → 𝐺 : 𝐴 ⟶ 𝒫 𝐵 ) |
14 |
13
|
ffvelrnda |
⊢ ( ( 𝐺 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝒫 𝐵 ) |
15 |
5 14
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝒫 𝐵 ) |
16 |
15
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ⊆ 𝐵 ) |
17 |
16
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
18 |
17
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ) ) → 𝑦 ∈ 𝐵 ) |
19 |
2 3 12 18
|
opabex2 |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ) } ∈ V ) |
20 |
6 11 5 19
|
fvmptd |
⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 𝐺 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ) } ) |