Metamath Proof Explorer


Theorem rfovcnvfvd

Description: Value of the converse of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B , evaluated at function G . (Contributed by RP, 27-Apr-2021)

Ref Expression
Hypotheses rfovd.rf 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥𝑎 ↦ { 𝑦𝑏𝑥 𝑟 𝑦 } ) ) )
rfovd.a ( 𝜑𝐴𝑉 )
rfovd.b ( 𝜑𝐵𝑊 )
rfovcnvf1od.f 𝐹 = ( 𝐴 𝑂 𝐵 )
rfovcnvfv.g ( 𝜑𝐺 ∈ ( 𝒫 𝐵m 𝐴 ) )
Assertion rfovcnvfvd ( 𝜑 → ( 𝐹𝐺 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝐺𝑥 ) ) } )

Proof

Step Hyp Ref Expression
1 rfovd.rf 𝑂 = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑎 × 𝑏 ) ↦ ( 𝑥𝑎 ↦ { 𝑦𝑏𝑥 𝑟 𝑦 } ) ) )
2 rfovd.a ( 𝜑𝐴𝑉 )
3 rfovd.b ( 𝜑𝐵𝑊 )
4 rfovcnvf1od.f 𝐹 = ( 𝐴 𝑂 𝐵 )
5 rfovcnvfv.g ( 𝜑𝐺 ∈ ( 𝒫 𝐵m 𝐴 ) )
6 1 2 3 4 rfovcnvd ( 𝜑 𝐹 = ( 𝑔 ∈ ( 𝒫 𝐵m 𝐴 ) ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝑔𝑥 ) ) } ) )
7 fveq1 ( 𝑔 = 𝐺 → ( 𝑔𝑥 ) = ( 𝐺𝑥 ) )
8 7 eleq2d ( 𝑔 = 𝐺 → ( 𝑦 ∈ ( 𝑔𝑥 ) ↔ 𝑦 ∈ ( 𝐺𝑥 ) ) )
9 8 anbi2d ( 𝑔 = 𝐺 → ( ( 𝑥𝐴𝑦 ∈ ( 𝑔𝑥 ) ) ↔ ( 𝑥𝐴𝑦 ∈ ( 𝐺𝑥 ) ) ) )
10 9 opabbidv ( 𝑔 = 𝐺 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝑔𝑥 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝐺𝑥 ) ) } )
11 10 adantl ( ( 𝜑𝑔 = 𝐺 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝑔𝑥 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝐺𝑥 ) ) } )
12 simprl ( ( 𝜑 ∧ ( 𝑥𝐴𝑦 ∈ ( 𝐺𝑥 ) ) ) → 𝑥𝐴 )
13 elmapi ( 𝐺 ∈ ( 𝒫 𝐵m 𝐴 ) → 𝐺 : 𝐴 ⟶ 𝒫 𝐵 )
14 13 ffvelrnda ( ( 𝐺 ∈ ( 𝒫 𝐵m 𝐴 ) ∧ 𝑥𝐴 ) → ( 𝐺𝑥 ) ∈ 𝒫 𝐵 )
15 5 14 sylan ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) ∈ 𝒫 𝐵 )
16 15 elpwid ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) ⊆ 𝐵 )
17 16 sseld ( ( 𝜑𝑥𝐴 ) → ( 𝑦 ∈ ( 𝐺𝑥 ) → 𝑦𝐵 ) )
18 17 impr ( ( 𝜑 ∧ ( 𝑥𝐴𝑦 ∈ ( 𝐺𝑥 ) ) ) → 𝑦𝐵 )
19 2 3 12 18 opabex2 ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝐺𝑥 ) ) } ∈ V )
20 6 11 5 19 fvmptd ( 𝜑 → ( 𝐹𝐺 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 ∈ ( 𝐺𝑥 ) ) } )