| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rfovd.rf | ⊢ 𝑂  =  ( 𝑎  ∈  V ,  𝑏  ∈  V  ↦  ( 𝑟  ∈  𝒫  ( 𝑎  ×  𝑏 )  ↦  ( 𝑥  ∈  𝑎  ↦  { 𝑦  ∈  𝑏  ∣  𝑥 𝑟 𝑦 } ) ) ) | 
						
							| 2 |  | rfovd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | rfovd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 4 |  | rfovcnvf1od.f | ⊢ 𝐹  =  ( 𝐴 𝑂 𝐵 ) | 
						
							| 5 |  | rfovcnvfv.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝒫  𝐵  ↑m  𝐴 ) ) | 
						
							| 6 | 1 2 3 4 | rfovcnvd | ⊢ ( 𝜑  →  ◡ 𝐹  =  ( 𝑔  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ↦  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑔 ‘ 𝑥 ) ) } ) ) | 
						
							| 7 |  | fveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑦  ∈  ( 𝑔 ‘ 𝑥 )  ↔  𝑦  ∈  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 9 | 8 | anbi2d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑔 ‘ 𝑥 ) )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 10 | 9 | opabbidv | ⊢ ( 𝑔  =  𝐺  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑔 ‘ 𝑥 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑥 ) ) } ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝜑  ∧  𝑔  =  𝐺 )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝑔 ‘ 𝑥 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑥 ) ) } ) | 
						
							| 12 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 13 |  | elmapi | ⊢ ( 𝐺  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  →  𝐺 : 𝐴 ⟶ 𝒫  𝐵 ) | 
						
							| 14 | 13 | ffvelcdmda | ⊢ ( ( 𝐺  ∈  ( 𝒫  𝐵  ↑m  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝒫  𝐵 ) | 
						
							| 15 | 5 14 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝒫  𝐵 ) | 
						
							| 16 | 15 | elpwid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑥 )  ⊆  𝐵 ) | 
						
							| 17 | 16 | sseld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  ∈  ( 𝐺 ‘ 𝑥 )  →  𝑦  ∈  𝐵 ) ) | 
						
							| 18 | 17 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑥 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 19 | 2 3 12 18 | opabex2 | ⊢ ( 𝜑  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑥 ) ) }  ∈  V ) | 
						
							| 20 | 6 11 5 19 | fvmptd | ⊢ ( 𝜑  →  ( ◡ 𝐹 ‘ 𝐺 )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑥 ) ) } ) |