Metamath Proof Explorer


Theorem rhmf

Description: A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses rhmf.b B=BaseR
rhmf.c C=BaseS
Assertion rhmf FRRingHomSF:BC

Proof

Step Hyp Ref Expression
1 rhmf.b B=BaseR
2 rhmf.c C=BaseS
3 rhmghm FRRingHomSFRGrpHomS
4 1 2 ghmf FRGrpHomSF:BC
5 3 4 syl FRRingHomSF:BC