Metamath Proof Explorer


Theorem rhmmul

Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses rhmmul.x X=BaseR
rhmmul.m ·˙=R
rhmmul.n ×˙=S
Assertion rhmmul FRRingHomSAXBXFA·˙B=FA×˙FB

Proof

Step Hyp Ref Expression
1 rhmmul.x X=BaseR
2 rhmmul.m ·˙=R
3 rhmmul.n ×˙=S
4 eqid mulGrpR=mulGrpR
5 eqid mulGrpS=mulGrpS
6 4 5 rhmmhm FRRingHomSFmulGrpRMndHommulGrpS
7 4 1 mgpbas X=BasemulGrpR
8 4 2 mgpplusg ·˙=+mulGrpR
9 5 3 mgpplusg ×˙=+mulGrpS
10 7 8 9 mhmlin FmulGrpRMndHommulGrpSAXBXFA·˙B=FA×˙FB
11 6 10 syl3an1 FRRingHomSAXBXFA·˙B=FA×˙FB