Metamath Proof Explorer


Theorem riiner

Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Assertion riiner xARErBB×BxARErB

Proof

Step Hyp Ref Expression
1 xpider B×BErB
2 riin0 A=B×BxAR=B×B
3 2 adantl xARErBA=B×BxAR=B×B
4 ereq1 B×BxAR=B×BB×BxARErBB×BErB
5 3 4 syl xARErBA=B×BxARErBB×BErB
6 1 5 mpbiri xARErBA=B×BxARErB
7 iiner AxARErBxARErB
8 7 ancoms xARErBAxARErB
9 erssxp RErBRB×B
10 9 ralimi xARErBxARB×B
11 riinn0 xARB×BAB×BxAR=xAR
12 10 11 sylan xARErBAB×BxAR=xAR
13 ereq1 B×BxAR=xARB×BxARErBxARErB
14 12 13 syl xARErBAB×BxARErBxARErB
15 8 14 mpbird xARErBAB×BxARErB
16 6 15 pm2.61dane xARErBB×BxARErB