Metamath Proof Explorer


Theorem rimrcl1

Description: Reverse closure of a ring isomorphism. (Contributed by SN, 19-Feb-2025)

Ref Expression
Assertion rimrcl1 FRRingIsoSRRing

Proof

Step Hyp Ref Expression
1 rimrhm FRRingIsoSFRRingHomS
2 rhmrcl1 FRRingHomSRRing
3 1 2 syl FRRingIsoSRRing