Metamath Proof Explorer


Theorem ringrzd

Description: The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025)

Ref Expression
Hypotheses ringz.b B=BaseR
ringz.t ·˙=R
ringz.z 0˙=0R
ringlzd.r φRRing
ringlzd.x φXB
Assertion ringrzd φX·˙0˙=0˙

Proof

Step Hyp Ref Expression
1 ringz.b B=BaseR
2 ringz.t ·˙=R
3 ringz.z 0˙=0R
4 ringlzd.r φRRing
5 ringlzd.x φXB
6 1 2 3 ringrz RRingXBX·˙0˙=0˙
7 4 5 6 syl2anc φX·˙0˙=0˙