Metamath Proof Explorer


Theorem riota1

Description: Property of restricted iota. Compare iota1 . (Contributed by Mario Carneiro, 15-Oct-2016)

Ref Expression
Assertion riota1 ∃!xAφxAφιxA|φ=x

Proof

Step Hyp Ref Expression
1 df-reu ∃!xAφ∃!xxAφ
2 iota1 ∃!xxAφxAφιx|xAφ=x
3 1 2 sylbi ∃!xAφxAφιx|xAφ=x
4 df-riota ιxA|φ=ιx|xAφ
5 4 eqeq1i ιxA|φ=xιx|xAφ=x
6 3 5 bitr4di ∃!xAφxAφιxA|φ=x