Metamath Proof Explorer


Theorem riotauni

Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011)

Ref Expression
Assertion riotauni ∃!xAφιxA|φ=xA|φ

Proof

Step Hyp Ref Expression
1 df-reu ∃!xAφ∃!xxAφ
2 iotauni ∃!xxAφιx|xAφ=x|xAφ
3 1 2 sylbi ∃!xAφιx|xAφ=x|xAφ
4 df-riota ιxA|φ=ιx|xAφ
5 df-rab xA|φ=x|xAφ
6 5 unieqi xA|φ=x|xAφ
7 3 4 6 3eqtr4g ∃!xAφιxA|φ=xA|φ