Metamath Proof Explorer


Theorem risefaccl

Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion risefaccl AN0AN

Proof

Step Hyp Ref Expression
1 ssid
2 ax-1cn 1
3 mulcl xyxy
4 nn0cn k0k
5 addcl AkA+k
6 4 5 sylan2 Ak0A+k
7 1 2 3 6 risefaccllem AN0AN