Metamath Proof Explorer


Theorem rmo2i

Description: Condition implying restricted "at most one". (Contributed by NM, 17-Jun-2017)

Ref Expression
Hypothesis rmo2.1 yφ
Assertion rmo2i yAxAφx=y*xAφ

Proof

Step Hyp Ref Expression
1 rmo2.1 yφ
2 rexex yAxAφx=yyxAφx=y
3 1 rmo2 *xAφyxAφx=y
4 2 3 sylibr yAxAφx=y*xAφ