Metamath Proof Explorer


Theorem rmoanid

Description: Cancellation law for restricted at-most-one quantification. (Contributed by Peter Mazsa, 24-May-2018) (Proof shortened by Wolf Lammen, 12-Jan-2025)

Ref Expression
Assertion rmoanid *xAxAφ*xAφ

Proof

Step Hyp Ref Expression
1 ibar xAφxAφ
2 1 bicomd xAxAφφ
3 2 rmobiia *xAxAφ*xAφ