Metamath Proof Explorer


Theorem rmoanim

Description: Introduction of a conjunct into restricted "at most one" quantifier, analogous to moanim . (Contributed by Alexander van der Vekens, 25-Jun-2017) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 24-Aug-2023)

Ref Expression
Hypothesis rmoanim.1 xφ
Assertion rmoanim *xAφψφ*xAψ

Proof

Step Hyp Ref Expression
1 rmoanim.1 xφ
2 impexp φψx=yφψx=y
3 2 ralbii xAφψx=yxAφψx=y
4 1 r19.21 xAφψx=yφxAψx=y
5 3 4 bitri xAφψx=yφxAψx=y
6 5 exbii yxAφψx=yyφxAψx=y
7 df-rmo *xAφψ*xxAφψ
8 df-mo *xxAφψyxxAφψx=y
9 impexp xAφψx=yxAφψx=y
10 9 albii xxAφψx=yxxAφψx=y
11 df-ral xAφψx=yxxAφψx=y
12 10 11 bitr4i xxAφψx=yxAφψx=y
13 12 exbii yxxAφψx=yyxAφψx=y
14 7 8 13 3bitri *xAφψyxAφψx=y
15 df-rmo *xAψ*xxAψ
16 df-mo *xxAψyxxAψx=y
17 impexp xAψx=yxAψx=y
18 17 albii xxAψx=yxxAψx=y
19 df-ral xAψx=yxxAψx=y
20 18 19 bitr4i xxAψx=yxAψx=y
21 20 exbii yxxAψx=yyxAψx=y
22 15 16 21 3bitri *xAψyxAψx=y
23 22 imbi2i φ*xAψφyxAψx=y
24 19.37v yφxAψx=yφyxAψx=y
25 23 24 bitr4i φ*xAψyφxAψx=y
26 6 14 25 3bitr4i *xAφψφ*xAψ