Metamath Proof Explorer


Theorem rmobidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017) Avoid ax-6 , ax-7 , ax-12 . (Revised by Wolf Lammen, 23-Nov-2024)

Ref Expression
Hypothesis rmobidva.1 φ x A ψ χ
Assertion rmobidva φ * x A ψ * x A χ

Proof

Step Hyp Ref Expression
1 rmobidva.1 φ x A ψ χ
2 1 pm5.32da φ x A ψ x A χ
3 2 mobidv φ * x x A ψ * x x A χ
4 df-rmo * x A ψ * x x A ψ
5 df-rmo * x A χ * x x A χ
6 3 4 5 3bitr4g φ * x A ψ * x A χ