Metamath Proof Explorer


Theorem rmobidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017) Avoid ax-6 , ax-7 , ax-12 . (Revised by Wolf Lammen, 23-Nov-2024)

Ref Expression
Hypothesis rmobidva.1 φxAψχ
Assertion rmobidva φ*xAψ*xAχ

Proof

Step Hyp Ref Expression
1 rmobidva.1 φxAψχ
2 1 pm5.32da φxAψxAχ
3 2 mobidv φ*xxAψ*xxAχ
4 df-rmo *xAψ*xxAψ
5 df-rmo *xAχ*xxAχ
6 3 4 5 3bitr4g φ*xAψ*xAχ