Metamath Proof Explorer


Theorem rmobidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017) Avoid ax-6 , ax-7 , ax-12 . (Revised by Wolf Lammen, 23-Nov-2024)

Ref Expression
Hypothesis rmobidva.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion rmobidva
|- ( ph -> ( E* x e. A ps <-> E* x e. A ch ) )

Proof

Step Hyp Ref Expression
1 rmobidva.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
2 1 pm5.32da
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) )
3 2 mobidv
 |-  ( ph -> ( E* x ( x e. A /\ ps ) <-> E* x ( x e. A /\ ch ) ) )
4 df-rmo
 |-  ( E* x e. A ps <-> E* x ( x e. A /\ ps ) )
5 df-rmo
 |-  ( E* x e. A ch <-> E* x ( x e. A /\ ch ) )
6 3 4 5 3bitr4g
 |-  ( ph -> ( E* x e. A ps <-> E* x e. A ch ) )