Metamath Proof Explorer


Theorem rmobidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017) Avoid ax-6 , ax-7 , ax-12 . (Revised by Wolf Lammen, 23-Nov-2024)

Ref Expression
Hypothesis rmobidva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion rmobidva ( 𝜑 → ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rmobidva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 1 pm5.32da ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
3 2 mobidv ( 𝜑 → ( ∃* 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃* 𝑥 ( 𝑥𝐴𝜒 ) ) )
4 df-rmo ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥𝐴𝜓 ) )
5 df-rmo ( ∃* 𝑥𝐴 𝜒 ↔ ∃* 𝑥 ( 𝑥𝐴𝜒 ) )
6 3 4 5 3bitr4g ( 𝜑 → ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐴 𝜒 ) )