Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017) Avoid ax-6 , ax-7 , ax-12 . (Revised by Wolf Lammen, 23-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rmobidva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
Assertion | rmobidva | ⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐴 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobidva.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
2 | 1 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
3 | 2 | mobidv | ⊢ ( 𝜑 → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
4 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
5 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜒 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) | |
6 | 3 4 5 | 3bitr4g | ⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐴 𝜒 ) ) |